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Abstract. We revinit the theory of the upper critkal field of disordered supercon- 
ductors and we present an alternative dada t ion  of B,, where we avoid semiclassical 
arguments and work from the start with Landau levels. As in other current theoris 
we neglect Coulomb interactions and conantrate on localization effects, and this we 
do by generalizing the self-combtent theory by Vollhdt and WBHe to a system 
lad&g translational and time remal  invariance. We analyse the theory in con- 
figuration space and discuss the appmi-tions that lead to dosed self-consistent 
equations that would reproduce well known results in the non-mapetic case. In the 
low-field limit we obtain a pair of coupled equations for the frequency-renormalized 
diffusion coefficient and conductivity. As a result of our detailed calculation from 
hrst principles we detect a suppression of the diffusion pole in one of the equations 
that was overlooked in a phenomenolo~cal theory. The results far the upper critical 
field exhibit a change I" negative to positive curvature in the B., versus T plot 
for increa4;ing disorder and they are compared with thox obtained in the theory of 
Kotliar and Kapitulnik. 

1. Introduction 

The classical theory of disordered superconductors in the presence of a magnetic field 
was formulated by Werthamer, Helfand and Aohenberg [I], but recent developments 
in localization theory [2] together with new experimental results [3,4] have led theo- 
rists to generalize these early calculations. In particular, the experimental evidence 
presented in [3] reveals a pronounced decrease in the critical-field slope parameter of 
superconducting thin films as a function of increasing normal-state sheet resistance, 
which results in a change from negative to positive curvature in the Bz versus T plot, 
and it is interpreted as a disorder-induced localization effect [Z]. Speaking loosely, 
one can see how the conductivity affects the critical-field behaviour by expanding the 
implicit solution in the classical theory [I] for T 5 T, which gives E,, # (T, - T ) / D o  
where Do = +eFr is the diffusion coefficient. One may expect that when localization 
effects are taken into account the former expression would be modified by replacing 
Do -+ DoA where A = u(T)/uo would be the ratio of the localization-renormaliied 
conductivity to the Drude value uo. 

At the metal insulator transition one would expect that u(T) would vanish on 
decreasingT with some algebraic behaviour, u(T) rc! (T/TF)6, which would produce an 
automatic increase of BC1(T) above its classical value for low temperatures. Another 
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line of thought, however, is that localization effects in superconductors appear through 
the renormahation of the Coulomb repulsion and the phonon-induced attraction [4]. 
In spite of these ideas looking simple and appealing, a rigorous microscopic calculation 
is difficult and involved as it requires afull use of diagrammatic many-body techniques 
to solve self-consistently for the superconducting properties in the presence of a metal- 
insulator transition, with the extra complication that the superconducting electrons 
are no longer free but move in a magnetic field that acts as a pair-breaker in the 
superconductor, but also destroys particlehole symmetry and reduces localization. 
Several authors concentrated on the effects that the disorder-renormalized Coulomb 
interaction produces on the superconducting properties [5-71, and the results in [6] 
give an enhancement of Ec, at low temperatures while keeping always a negative 
curvature in the Ecz versus T plot. 

Along a different line of approach, Kotliar and Kapitulnik [8] presented a the- 
ory that neglects Coulomb interactions while strong-disorder effects are incorporated 
into the scale dependence of the diffusion coefficient. They obtain as a result a POP 

itive curvature in the Ecl versus T plot in agreement with the experiments. Their 
method of calculation, like all previous work, is based on the standard ‘semiclassical 
approximation’ that consists in the following: the superconducting kernel K ( q )  is first 
evaluated at zero magnetic field by exploiting translational invariance and particle- 
hole symmetry, in terms of the diffusion coefficient that had been previously calculated 
in localization theory [9]. 

The magnetic field dependence is incorporated phenomenologically afterwards by 
writing Z<(q = &) in place of K(q = 0) in the equation for the transition temper- 
ature, where w: = 2eB/mc is the cyclotron frequency for a doubly charged particle. 
Equivalent ways of obtaining the semiclassical results are, either by approximating the 
true electron Green function by the Green function at zero field times a phase factor, 
or by replacing & qz 4 w:(n + i), where qL is the magnitude of the momentum 
transfer on the plane normal to the magnetic field. 

In the present work we revisit the problem and we present an alternative calcu- 
lation of E,, from first principles, where we avoid the semiclassical arguments and 
work from the start with the true electron eigenstates in a magnetic field, as was pre- 
viously done for the magnetoconductivity [IO]. Although the semiclassical approach 
is expected to give good results in the low-field, strong-disorder limit ucr < 1, its 
asymptotic character does not permit the calculation of systematic corrections. For 
instance, the results in [lo] show anisotropic effects in the conductivity tensor that 
have been overlooked in the semiclassical calculations. We consider the same model as 
in [8], which neglects Coulomb interactions, and localization effects are introduced by 
generalizing the self-consistent theory of Vollhardt and WolfIe [l l]  to a system lacking 
translational invariance and particlehole symmetry, which requires some technical 
discussions. 

The superconducting kernel is obtained from the particle-particle reducible ver- 
tex part by attaching four propagators to it; then we write first the Bethe-Salpeter 
equations for the particleparticle and the particlehole reducible vertex parts in the 
approximation that considers only diagonal matrix elements [12], which gives us a 
pair of tractable equations. We obtain in this way an integral equation for the su- 
perconducting kernel and we calculate exactly the lowest eigenvalue that determines 
the transition temperature, in terms of the particleparticle irreducible vertex that 
according to [ll] is obtained from the particlehole reducible vertex part. 

The integral equation for the particlehole vertex part turns out to be translation- 
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ally invariant even in the presence of the field due to the cancellation of phases in the 
propagators going in opposite directions; then it is solved by Fourier transformation. 
However, in the Corresponding integral equation for the particleparticle vertex part 
the phases of the propagators going in the same direction add and an explicit solution 
could only be obtained to lowest order in the field [IO]. 

This paper is organized as follows: in section 2 we derive the equation for the crit- 
ical field in the low-field limit in terms of a renormalized diffusion coefficient &A,, 
where Do = f E ~ T  is the diffusion constant and A” is a frequency-dependent parame- 
ter inversely proportional to the particle-particle irreducible vertex part. In section 3 
we derive the equation for AV by applying the self-consistent localization theory [ll], 
which produces a pair of coupled equations for A, and the frequency-dependent con- 
ductivity that we indicate by U”. The explicit expressions obtained in the low-field 
limit are compared with the results by Yoshioka et  a1 [I31 for the magnetoconductiv- 
ity, and we obtained an additional suppresion of the diffusion pole due to the difference 
in vertex parts that was overlooked in [13]. 

In section 4 we discuss the approximate solutions for A, in limiting cases and the 
corresponding results for Bc3. 

The expected change in curvature is obtained when we consider the weak-field, 
strong-disorder regime as shown in figure 4, later. 

2. Upper critical field 

We consider a system of superconducting electrons in the presence of a uniform mag- 
netic field B = V x A in the z-direction and of a random impurity potential. A t  
the critical point the gap vanishes and relevant physical properties are obtained by 
calculating the configurational average of products of Green functions that are the 
solutions of the equation: 

[&tu, + cF t 4 Df - V ( r ) ]  G*”(r,r’) = 6(r - r‘) 

D,  = V, - ie A(r).  

(1) 

where w, = ( 2 ~  t 1 ) ~ / / 3  and 

(2) 

We choose to work in the gauge A = (-By,O,O) and V ( r )  is the impurity potential 
with zero mean and variance: 

( V ( r )  V(r’))  = U6(r  - r‘). (3) 

The equation for the upper critical field B,,(T) is [I]: 

- C S y = 1  x 
P ”  

(4) 

where X > 0 is the strength of the attractive BSC interaction while S, is the lowest 
eigenvalue of the integral equation: 

/ dr’ &(r, r’) A(r’) = S, A(r)  (5) 
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with the kernel: 

Kp(r , r ' )  = (Gv(r,r') G-Jr,?')) (6) 

where the brackets indicate an average over random impurities a8 in (3).  
The impurity-averaged quantities are obtained through standard diagrammatic 

methods, only now the diagrams should be written in configuration space because of 
the lack of translational invariance. 

The averaged one-particle Green function satisfies the integral equation: 

c,(r,r') = G%r,r')+/ drl  d r z C ~ ( ~ , + l ) C Y ( ~ l I ~ Z ) G y ( ~ Z , ~ ' )  (7) 

where some of the diagrams contributing to the self-energy CV(r,r') are shown in 
figure l(a) and C:(r,r') is the solution of (1) for V = 0. 

The kernel in (5) is shown schematically in figure l(b) as a function of the reducible 
particle-particle vertex part, W;GP, which satisfies the integral equation of figure 2(a). 
In order to apply the self-consistent localization theory of Vollhardt and Wolfle [Ill, 
we should consider that the particle-particle vertex part, W,P-P, is directly obtained 
from the reducible particlehole vertex, W;gh, which is shown in figure 2(b). 

7 7 

i 

t 
+ 

Figure 1. (a) Same diagrams contributing to the elf- 
energy opeator C,(r,r'). Full l ine indicate a corn- 

r i' plebe propagator G(r,r'), pointed lines the hare in- 
teractions VS(r - r'). (h) Supmonductiog kemel ~ 1 9  

a function of the partide-particle vertex part (hatched 

.. 
(b) area). 

We proceed to evaluate these formal expressions in the approximation that con- 

If we approximate [12] 
siders only the contribution of diagonal matrix elements [12]. 

W,P-P(r,rz I r3r4) % n:-P 6(rl - r z )  6(r, - r4)  6(r1 - r3) (8) 
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in figure 2(a) we obtain that 

WLip(rlr* I r3r4) w W~[p(~l,~z)6(~l - r3)6(r2 - r4) (9) 

while for the kernel in figure I(b) we get the integral equation: 

K, ( r , r ‘ )  = K:(r,r’)+ IIF-p dr ,  K(r,rl)  Ko(rl,r’) J 
where: 

~ ~ ( r , r ’ ) = G ” ( ~ , ~ ’ ) G - ” ( r , r ’ ) .  (11) 

The self-energy is related to the irreducible particle-particle vertex part by the 
Ward identity: 

Im Ev(r, r‘) = dr,  dr, W:-P(vr1 1 rzd) Im Gv(r l ,  r 2 )  (12) J 
which can be proved by generalizing the method of Maleev el a[ 
translational invariant systems. Some diagrams for W,P-P are shown in figure 3. 

1141 to non- 

* 
r7 

.. * 
14 r5 

Figure 2. BetheSalpter equation for (a) the 
Educible partideparticle vertex function WLip 
and (b) the redudble particlehole vedex fun- 
tion w:;’. 

+ 
I 
I + ’:, + 

I j  

(C 1 

Figure 3. Some diagramr contributing to the ir- 
reducible particle-partide vertex function WE-’ 
(top) and to the imducible particlehole  fun^ 
tion w ~ P - ~  (batom). 
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In the same approximation we should write: 

E,(+, r’) FX i rv 6(r - r’) 

rv = Im Gv(r,r) .  (14) 

(13) 

and we obtain from (12) together with (8) the simplified identity: 

By using (13) the average propagator can be calculated as in [lo] to obtain: 

G J r ,  r‘) = gu(r  - r‘) exp (y + g’)(z - 2‘) (15) 

Hence G,(r , r )  is position independent as is required for the consistency of (14). We 
have in (15): 

m 

gv(r) = 2 / 2 exp (-iqz - 9 p z )  Ln (?pa)  G,(n,p). (16) 
“SO 

where p = (z,y) is the position vector on the plane normal to the field, L”(z) indicates 
a Laguerre polynomial, wc = eB and: 

It h a s  been shown before [I] that the eigenvalue of (5) with the kernel of (10) is 
given by: 

where S: satisfies: 

/ dr‘ IC,”(., r‘) A(#) = S,” A(.). (19) 

By introducing (11) and (15) into (19) we obtain the exact solution: 

A(r) = A, exp ( i ,  r y  - fti 
2 4 

with 

(21) 

The standard result is obtained from (21) in an expansion to lowest order in U,, which 
gives: 
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where 

We get by introducing (22) into (18) and using (14): 

which reduces to  the classical result [I] if we approximate rV m pF U, while to take 
into account localization effects one should include higher-order contributions to UF-p 
in (14), as is discussed in the next section. 

From (24) and (4) we obtain the implicit equation for the critical field, in the 
disordered limit when rY is much larger than the Debye frequency: 

m /  . \  

where 1 = T/Tc, T, being the critical temperature of the pure superconductor, and we 
indicate by Do = &r the diffusion constant with 7 = rTi. 

In (25) we introduced the notation: 

and we proceed to the evaluation of A" in the next section 

3. Vertex corrections and the self-consistent localization theory 

It was pointed out by Vollhardt and Wolfle (111 that the particleparticle irreducible 
vertex function contains a class of diagrams that are obtained by inverting one line 
in the particle-hole reducible vertex part, like diagrams (a) and (b) in figure 3. If we 
consider only those diagrams we can write: 

W!-p(rir2 I r3r4) = W;ih(rlr2 I r4r3) (27) 

where i%':ih contains all particle-hole diagrams that do not become particle-particle 
reducible by inverting one internal line, then diagrams (c) and (d) in figure 3 do 
not belong to this class. As in the present case particle-hole symmetry is lacking, 
we should consider also the corresponding equation for the particle-hole irreducible 
vertex part: 

W,P-h(rlrz I T4r3) = W;GP(rlr2 I r3r4). 

W,P-h(rirz I r4r3) m lI:-h6(r1 - rz)6(r3 - r4)6(rl - r3) 

(28) 

We should approximate as in (8) 

(29) 
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which gives from figure 2(b): 
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W,”,-(r.,r, I r4r3) - Wfih( r l  - r2)6(r, - r3)6(r2 - r l )  (30) 
with 

W:ih(r-r ’ )  = Ub(r -r’) +IIF-h J dpG,(r,p)G-,(p,r)W:Ch(p-r’) (31) 

while from (9) and figure 2(a) we get: 

W:Cp(r;r‘) = U6(r - r‘)+ J d p C , ( r , p ) G - . ( r , p ) W ~ ~ P ( p ; r ’ ) .  (32) 

The product of the two propagators going in opposite directions in (31) is trans- 
lationally invariant even in the presence of a magnetic field, because the phase factors 
in (15) will cancel each other. This is a difference from the kernel in (32), where the 
phases of the propagators going in the same direction add. Equation (31) can then be 
solved by Fourier transformation with the result: 

where we have from (15) and from [lo]: 

QJk) = / dreik.vgv(r)g-u(r) w -(I - wvrAv - k2D,,rA:). (34) 
1 

n g p  

The integral equation (32) appears in the calculation of the magnetoresistance and 
it was discussed in [lo]. Proceeding in the same way; we first observe that the solution 
to (32) can be written exactly as: 

W P - P ( ~ ,  = ei4=-=‘)(vtu’)Av(r 
“R 

with A ( r )  being the solution of the integral equation: 
(35) 

A(.) = U6(r)  + lIF-p /dpe’y~(+’=’*-p~ ‘ )g”(P)g-”(P)A”(r - P). (36) 

Equation (36) cannot be solved in closed form by Fourier transformation, but we 
obtain to lowest order [lo] in wc: 

with QY(r )  as given in (34). The result in (37) corresponds to the semiclassical 
approximation although it is not identical [lo] to it. 

By going back to  real space we do not recover the &function behaviour implied in 
the self-consistent equations (27) and (28) together with (8) and (29) then we further 
approximate in (31) and (36): 
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where tf is of the order of the mean free path. We obtain by identifying the terms 
in brackets in (38) and (39) as TIF-P and respectively, the pair of coupled 
equations: 

x 
U” = 1 - r + r- Re 

2 
where AV was introduced in (26) and we have defined: 

Also we have introduced: 

(43) 
1 

7 = 21;- (k&Y3 
with k, being a standard cut-off [lo]. In order to derive (40) and (41) from (38) and 
(39), we followed closely [9] in considering r to be a small parameter, although at the 
localization transition we make r = 1. 

We notice that  U“ in (41) corresponds to the magnetoresistance [lo] while the 
upper critical field in (25) depends on AV. At zero field these two quantities coincide 
and we obtain that  (40) and (41) reduce to Shapim’s result [9]. 

Equations (40) and (41) should also be compared with the work by Yoshioka el 
al [13], where a self-consistent localization theory in the presence of a magnetic field 
based on phenomenological semiclassical arguments, in two dimensions, is presented. 
We can identify their @(z), @(z) ,  for z = iw,, with our U” and A,, and while our 
(41) would correspond in three dimensions to their equation for a(.), equation (40) 
for A, is completely different from the equation for @(t) in [13], because they missed 
the shift in the diffusion pole due to having TI;+’ # Their expression for “(2) 

would be obtained from (40) by setting AV = up in the RHS. 
A closed solution of the problem would require us to solve for (40) and (41) for 

every frequency and field value, in order to solve for (25). We follow [SI by taking 
a more phenomenological approach and we find from (40) and (41) following the 
asymptotic solutions: 

(a) strong field or weakly localized regime: 

A, W 1 - r + r E m  
2 

w A” + (1 - r ) r i m  

(b) weak field or strongly localized regime: 

(44) 

(45) 

(46) 

(47) 
uy = A” + 0 (U:) 

A, = $( l -  T) + (w”T)’/~. 
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Figure 4. Normalized upper critical field w./w, 118 a function of temperatwe for 
some values of the disorder parameter C = $ ~ ( r T ~ ) - ' / ~ ( l -  7 ) .  which incresses for 
d-ing diwrder. The full curve is obtained from AV in (47). The broken curve 
corresponds to AKK in (48). The labels (a), (b) and (c) are for C = 0, 0.5 and 
5 .  For C = 5 the two curves are indktinguishable. The value C = 0 indicates the 
metal-insulator transition. 

The scaling function in section I1 of 181 is an interpolation formula between these two 
regimes and it corresponds to 

~~~ ~~ ~~ ~ ~ ~~ ~ ~ ~ ~~ ~~ ~~ ~ 

~i~ = $(I - r) + (wYr)ll3 + a z m  (48) 

with a2 being a phenomenological constant, if we identity the localization length 
. $=( l - r ) - l .  

We obtain in fact by using (48) that the equation (25) may he recast in the form: 

(49) 

where 6 = $( l  - r) B c-', y = a / 6  and 

Equation (49) is just the equation (55) for E,, in the paper by Kotliar and Ka- 
pitulnik [SI. It is important to remark here that their numerical calculations where 
performed by replacing y(y = m) in the RHS of (49), as is stated in section VI of [8], 
while our results were obtained directly from our (25). 

4. Numerical results and conclusions 

The results for the upper critical field B,, in figure 4 were obtained by introducing 
A, from (47) and (48) into (25). 
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We observe in figure 4 a striking change of curvature with increasing disorder 
( r  -+ 1) when we use (47), due to  the ( ~ , r ) ~ / ~  term. When we use (48) with 0 1 ~  = 1, 
the importance of this term is reduced and the curvature remains negative. Then in 
our formulation the change in curvature is obtained by using (47), which is equivalent 
to  introducing Av(uc = 0) into (25) and to considering the self-consistent equation to 
lowest order in wc. The theory of Kotliar and Kapitulnik [SI would correspond to (48) 
recast in the form of (49) with the further approximation y(y) = y(m). 

To condude, we present a study of the upper critical field of disordered super- 
conductors in terms of the Landau levels that avoids the use of the semiclassical ap- 
proximation from the start. We go beyond the classical theory of Werthamer, Helfand 
and Hohenberg [l] by including higher-order vertex corrections in the particleparticle 
propagator that forms the kernel of the integral equation for the gap function. 

We consider only those diagram that represent the processes responsible for the 
localization transition and we generalize the self-consistent theory of Vollhardt and 
Wolfle [ll] to the presence of a magnetic field, by using the exact electron eigenstates. 

This is the main difference between our formulation and the previous work in [8] 
and [13] for the upper critical field and the magnetoconductance, respectively. In these 
papers all the equations are worked out for B = 0 by exploiting translational and 
time reversal invariance, while the magnetic field is switched on phenomenologically 
afterwards. 

By working from the start within a formalism that lacks particlehole symmetry 
we have the advantage of identifying all the terms that would vanish in the symmetric 
case. This permitted us to find a suppression of the diffusion pole of (40) that was 
missing in [13]. 
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